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It is well known that in a first approximation white dwarf 
stars are such equilibrium configurations, which masses of 

matter with completely degenerate electrons take up under the 
influence of their own internal gravitational fields. The gravi
tational forces act on the electrons mainly through a small radial 
displacement of the heavy particles relative to the electrons. 
Chandrasekhar [1] has in his theory of white dwarf stars taken 
account of the relativistic relation between energy and momentum 
of a particle in finding the equation of state of a relativistically 

► degenerate electron gas.
We shall here investigate the influence of another relativistic 

effect, namely the “spin-orbit interaction’’, which is well known 
from the theory of the fine structure of the hydrogen spectrum. 
The star will be considered as a kind of Tiiomas-Fermi atom, 
and we are thus using an approximation, which is well suited 
for the problem in question, even if it is not very good in the 
case of ordinary atoms. In the stellar interior we may namely 
deal with volume elements having linear dimensions that are 
small by a factor of about 109 in comparison with the dimensions 
of the star as a whole and still large by a similar factor in com
parison with electronic wave lengths.

We place the origin of our co-ordinate system at the center 
of the spherically symmetric star and are then going to use Di
rac’s equations for electrons in a central field.

The angle-dependent part of the solution is well known and 
is, independent of the form of the potential as a function of the 
distance from the center, leading to the following two simultaneous 
differential equations for two radial functions R± and R2: (cf. 
A. Sommerfeld : Wellenmechanik, Ch. IV, §7. [2])
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E+MÄi==^(£_r+£o)Ä2

The notations used here and in the following have their usual 
meaning. The quantum number k is restricted to positive and 
negative integers.

Introducing the functions I)l = rRr and P2 = rP2 we get

^(£-V+E0)P2

(2)

In order to deduce a wave equation that enables us to apply 
the principles of quantum statistics we proceed as follows: We 

differentiate the first of equations (2) and substitute for —-2 

the expression from the second equation and get

fP1_kdPï k 
dr2 r dr r r2 1

(3)

Then P2 is eliminated from the bracket by the aid of the first 
of equations (2), so that we get

d~P, , (£-V)2-£02 _ k2-k
dr2 h2c2 r2

1^’p
he dr ~”

By an exactly similar procedure we find

d2P2 [(E-Vy-E2
dr2 h2c2

k2 + Á’

(4)

(5) *

In the case of a vanishing potential gradient these two differ
ential equations are two wave equations. They have identical 
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eigenfunctions and eigenvalues for values of k that diller by 
one, and they are changed into each other by the interchange 
of + k and — k.

In order to treat the general case of a non-vanishing potential 
gradient, when equations (4) and (5) describe coupled oscilla
tions, we introduce a linear combination

Q = ail\ + a2P2 , (6)

where a1 and a2 are as yet undetermined constants. Multiplying 
(4) and (5) by and a2 respectively and adding, we get

d2Q .
dr2 1

k2V)2_£2

/iV
(7)

►

We can now determine the ratio of the as and a new con
stant, 7, and arrive at a wave equation for Q of the following 
form :

(8)

provided r2 can be treated as a constant in that region, char

acterized by a small interval of r, which we will consider. 
Equating the coefficients of Px and P2 in (7) and (8) we get the 
following two equations

for the constantWriting A’o r~ (IV h ave

(9)

ka1 — k0a2 + gai = 0 

koa1 — ka2 + ga2 = 0.
(10)
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In order that the above equations have finite solutions for 
the a’s, the determinant

+ S'
must vanish.

This leads to the (secular) equation

í/2 = F-7¿. • (11)

The constant g niay then take one of the two values

S — i j/ 7ca /tq. (12)

If we choose the upper sign we have the differential equation

(£--V)2-P2 k-+yk2-k*
h2c2

wer sign

(£ -V)2-E2 F-j/F-Á’2
712c2 r2

The functions Qj and then are two different linear com
binations of 7\ and P2. The request that Pj and P2 both fulfill 
the boundary conditions leads to a similar request for the Q’s.

The equations (13) and (14) may both, independent of the 
sign of g, be written as

The above equation is in the case of a hydrogen atom iden
tical with the iterated Dirac equation given by Temple [3]. Our 
Q is equal to his W multiplied by r. In that special case the terms 

(iZ V\ *”
7 d / cancel each °ther, and k0 is equal to the line

structure constant.
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►

For every energy value determined by this equation there is 
a 2 I k |-fold degeneracy due to the angular parts of the functions.

The quantum number / is namely equal to I k J —y (cf. Som

merfeld, loe. cit. Ch. IV, § 8). For the hydrogen atom e.g. the 
2Si - and 2Pi-states both correspond to k2 — 1 and are both 
double. Similarly the 2Pa- and 2Zh-states,' which correspond to 
k = ± 2, are both quadruple etc.

For each sign and numerical value of g the number of states 
with energy constants lower than a maximal value Em, char
acteristic of the star, in a volume element in the form of a shell 
concentric with the star, is equal to 2 | k | times the number of 
half oscillations of the radial function Q for the maximum energy 
value, because each state has one node less than that lying 
immediately above it.

The minimum value of k2 is ko, because a smaller value 
would cause E to be complex. (For the hydrogen atom this is 
no problem, since the line-structure constant is much smaller 
than one, the lowest allowed value of k).

The minimum radial wave length AmJn is determined as a 
function of Eni and g by

For a thickness of the shell of one cm the total number of 
states with a certain numerical value of g then is equal to

because we need not here distinguish between g and g 1. The 
first factor two to the left is due to the double sign of g.

We find the total number of states by integrating over | k | 
from g2 — 0 to its maximal value, which value makes the inte
grand vanish. We use the relation

2 Å- </ k - ¿(s2)- (18)
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The total number N of states with energy less than Em is 
then determined by

The number of states per cubic cm is found by dividing N 
by 4 7tr2. When all states with energy constants less than Eni 
are occupied by electrons, the material density () is found by 
multiplying the density of stales by the mass per electron, 
where the mass of a hydrogen atom is denoted by For pure 
hydrogen the molecular weight //e is equal to one. We gel

(? 3 n2 h ’ c3 V dr) (21) <

If the gravitational potential per unit mass is called U, we 
have Poisson’s equation:

2 dU .= 4 n(j Q. r dr
(22)

differential equation for V (writing h for 2nh):

2

*

(21) and (23) we 
distribution of the

have neglected such non-uni
heavy particles as has been 
[4].

In deriving 
formitv in the 
taken into account by Schatzman

Introducing as a new variable

I'he potential function T is equal to so that we arrive
at the following

(¿m
32 n- /d-nijj (r

3 A3?
d2V 2 dV 
dr2 r dr

Em~V 
lJ = ~~E~

?. (23)

(24)
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where we have made use of the relation

= m0c2. (26)

we

If the term —in the bracket in equation (25) is neglected, 

find Chandrasekhar’s equation [5]. Our aim is, however, 
to find the effect of this term on the mass-radius relation for white 
dwarf stars. If we introduce Chandrasekhar’s variables

r = ar], y = y0<p,

« =
1 /37i3\i

mo!/o \^GcJ
liUo 1

7,71 • 10s cm
/'J/o

(27)

we can write the differential equation as

2'M
r/2 dr¡Y dr¡) (28)

where y has to lake the value one at the center. The boundary

condition is = 0 at the center. The surface is found where 
a r¡

(he density vanishes (at = th)-

In the limiting case when is very near one, the limiting 
I/o

solution is, just as is that of Chandrasekhar’s equation, that of 
3an Emden equation of index ty- (Then all relativistic effects are 

negligible).
Following Chandrasekhar we deduce the following expres

sion for the mass of the whole configuration:

|/.3 -
-I |z2 Ti/ç M V dr¡/i¡-T¡í>

M (29)
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where the numerical factor is 2,85 ^u~2 solar masses. (For 
comparison with Chandrasekhar’s results we have used his 
adopted values of the natural constants throughout this paper).

The differential equation (28) has been integrated numerically

for three values of the parameter —The results for the radii 
J/Ó

and masses of the corresponding stellar configurations are given 
below. For comparison, Chandrasekhar’s values are also given. 
Our central densities are the same as in his models for the same 
parameter values.

Table I.

The density distributions are given in Table II. The unit of

1
i/o2

R
h

Chandrasekhar’s values

« /
'* n

9 d<P\

0,5 . 2,58 0,597 2,50 0,707
0,2 . 1,84 0,920 1,67 1,243
0,1 . 1,55 1,091 1,29 1,519

density is

li =
8 7r//fj»n/n¡ c8

3 Ä8 9,82-ÎO5^ g cm“3.

The unit of radius is Zx.
A comparison of the results with those of Chandrasekhar 

shows that the radii are larger and the masses smaller than his 

for the same values of —. For the same value of the mass the
I/o

radius is smaller than Chandrasekhar’s.

The limiting case of vanishing —2- has also been treated by 
I/o

numerical integration. Table III gives the variable <p together 

with —?/2<z and as functions of ri. In this case there is no 

definite radius measured in units of lxy~ l. For any value of the 
parameter we have namely the following limiting form of cp as 
a function of Tjt

,C2(P^ q + -. (30)
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Table II.

yo2
r .
h

0,5 0,2 0,1

0,0............. 1,00 8,00 27,00
0,1............. 0,99 7,81 25,71
0,2............. 0,97 7,29 22,01
0,3............. 0,94 6,44 16,59
0,4............. 0,89 5,37 11,03
0,5............. 0,83 4.21 6,68
0,6............. 0,76 3,13 3,86
0,7............. 0,69 2,22 2,20
0,8............. 0,61 1,53 1,26
0,9............. 0,53 1,03 0,73
1,0............. 0,45 0,68 0,42
1,1............. 0,38 0,45 0,24
1,2............. 0,32 0,29 0,13
1,3............. 0,26 0,19 0,07
1,4............. 0,20 0,12 0,03
1,5............. 0,16 0,07 0,01
1,6............. 0,13 0,04
1,7............. 0,10 0,02
1,8............. 0,07 0,00
1,9............. 0,05
2,0............. 0,04
2,1............. 0,03
2,2............. 0,02
2,3............. 0,01
2,4............. 0,00 • • • •
2,5............. 0,00

In the case of = 0, however, the constant c, vanishes,
I/o

because we have here

as we approach the surface. The radius might therefore be finite 
in units of l1.

The limiting mass can be estimated from the data in the 
table to be some 85 per cent of Chandrasekhar’s limiting mass. 
This, which is that of an Emden polytrope of index 3, corresponds

► to a value of —equal to 2,018 at the surface.dr]
A more detailed investigation of the model considered would 

not be of very much interest, because we have here still neglected 
the influence of exchange effects. Eddington’s criticisms of the 



“current” theory of white dwarf stars have therefore not vet 
been properly answered, also because we have still preserved 
dividing walls (here spherical) inside the star for determining 
energy states instead of determining them for the star as a whole. 
'Flic present method of approach to the problem might serve as 
a starting point for investigations as to the effect due to the in
troduction of such refinements into lhe theory.

Table III.

»7 <P
» /

— T99 qIqc '/ <P — ’/V e/ec

0,0............. 1,0000 0,0000 1,000 3,9 0,3747 1,2453 0,008
0,1............. 0,9984 0,0003 0,995 4,0 0,3667 1,2563 0,007
0,2............. 0,9934 0,0026 0,980 4,1 0,3590 1,2669 0,006
0,3............. 0,9853 0,0088 0,955 4,2 0,3516 1,2768 0,006
0,4............. 0,9740 0,0203 0,920 4,3 0,3445 1,2862 0,005
0,5............. 0,9600 0,0386 0,876 4,4 0,3377 1,2949 0,005
0,6............. 0,9433 0,0643 0.823 4,5 0,3311 1,3038 0,004
0,7............. 0,9244 0,0978 0,763 4,6 0,3248 1,3120 0,004
0,8............. 0,9035 0,1389 0,697 4,7 0,3187 1,3194 0,003
0,9............. 0.8811 0,1868 0,628 4,8 0,3129 1,3270 0,003
¿0............. 0,8576 0,2402 0,558 4,9 0,3072 1,3338 0,003
1,1............. 0,8332 0,2978 0,489 5,0 0,3017 1,3407 0,003
1,2............. 0,8084 0,3580 0,424
1,3............. 0,7836 0,4195 0,364 6,5 0,2771 1,371 0,0018
1,4............. 0,7589 0,4806 0,310 6,0 0,2561 1,395 0,0012
1,5............. 0,7346 0,5406 0,262 6,5 0,2381 1,416 0,0009
1,6............. 0,7109 0,5984 9,221 7,0 0,2225 1,433 0,0007
1,7............. 0,6879 0,6536 0,186 7,5 0,2087 1,448 0,0005
1,8............. 0,6657 0,7058 0,156 8,0 0,1966 1,461 0,0004
1,9............. 0,6443 0,7544 0,131 8,5 0,1858 1,473 0,0003
2,0............. 0,6239 0,8000 0,110 9,0 0,1762 1,484 0,0002
2,1............. 0,6043 0,8424 0,092 9,5 0,1675 1,493 0,0002
9 9 0,5857 0,8815 0,078 10,0 0,1596 1,501 0,0002
2,3............. 0,5679 0,9179 0,066
23............. 0’5510 11.9515 0,056 15 0,1087 1,56 0,000034
2,5............. 0,5349 0,9826 0,048 20 0,0825 1,59 0,000012
2*6............. 0’5195 1,0112 0,041 25 0,0665 1,61 0,000005
2,7............. 0,5049 1,0377 0,035 30 0,0558 1,62 0,000003
2,8............. 0,4910 1,0621 0,030 35 0,0481 1,63 0,000002
2,9............. 0,4778 1.0855 0,026 40 0,0422 1,64 0,000001
3,0............. 0,4652 1,1067 0,023 45 0,0376 1,65 0,000001
3,1............. 0,4532 1,1266 0,020 50 0,0340 1,65
3,2............. 0,4418 1,1448 0,017 55 0,0310 1,66
3,3............. 0,4308 1,1620 0,015 60 0,0284 1,66
33............. 0,4204 1,1781 0,014 65 0,0263 1,67
3,5............. 0,4104 1,1933 0,012 70 0,0245 1,67
3,6............. 0,4009 1,2075 0,011 75 0,0229 1,68
3,7............. 0,3918 1,2210 0,009 80 0,0215 1,68
3,8............. 0,3831 1,2333 0,008 85 0,0202 1,68

90 0,0191 1,69
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